skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 2, 2026
  2. Petrulis, Aras (Ed.)
    Animals organize into social groups to increase collective fitness. These groups use behavior and morphological traits like color to communicate social status. Male bluegill (Lepomis macrochirus) form breeding collectives during the reproductive months. However, whether these colonies generate resource-stratified social hierarchies to manage intrasexual competition is unknown. We hypothesize that territorial position within the colony results in different body colors and behavioral profiles. To test this hypothesis, we quantified color patterns in wild communities of bluegill using computer vision, scored the behavior of lek occupying parental males, and categorically classified lek position as a function of neighboring males. From these data, we show that body coloration and behavior vary with lek position, suggesting a division of labor in the construction and maintenance of grouped territories where courtship and sexual selection take place. Collectively, these data underline the importance of male-specific morphological plasticity and its impacts on social organization. 
    more » « less
    Free, publicly-accessible full text available January 16, 2026
  3. Abstract Maneuverable microswimmers/microdrones that navigate in hard-to-reach spaces inside human bodies hold a great potential for various biomedical applications. Acoustically actuated microswimmers have already demonstrated feasibility. However, for eventual translation of this technology, a robust 3-D tracking strategy for the microswimmer is particularly required. This paper presents our lab-designed 3-D ultrasound tracking system for real-time tracking of an acoustically actuated 3-D swimming microdrone. The ultrasound tracking system utilizing two ultrasound probes, a step motor and a host controller, was built to track the 3-D arbitrary motion of the microdrone in real-time. The performance of tracking was evaluated in the benchtop experiments by comparing the reconstructed trajectories with synchronized camera recordings. The ultrasound tracking system showed high reliability, with an average error of less than 0.3 mm across six different trials when compared to camera tracking. The results demonstrated the capability of our lab-designed 3-D ultrasound tracking system in accurately tracking the undetermined motion of the acoustic actuated 3-D swimming microdrone in real-time. The developed tracking system holds promise as a potential approach for biomedical applications and could pave the way for future clinical translation of the microswimmer technology. 
    more » « less
  4. Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures. 
    more » « less
  5. We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene,Qua-Quine Starch(QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species.QQSmodulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developingChlamydomonas reinhardtiiandSaccharomyces cerevisiaestrains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression ofQQSinC. reinhardtiimodulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies inS. cerevisiaerevealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, inS. cerevisiaeboth the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes. 
    more » « less
  6. Critical role of hydrogen bond network is unraveled by integrating nuclear quantum effects into nonadiabatic molecular dynamics. 
    more » « less